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Abstract. From accelerator theory it is known that for highly

relativistic particles there is no transverse dependence of the

shunt impedance of slow-wave structures. However, input cav-

ity simulations for a low-voltage klystron have shown that this

property does not hold for non-relativistic beams.

In the following it is shown, that the shunt impedance of the

monopole mode in 2-dimensional mu�n-tin structures is gen-
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Abstract

From accelerator theory it is known that for highly relativistic particles there is

no transverse dependence of the shunt impedance of slow-wave structures. However,

input cavity simulations for a low-voltage klystron have shown that this property

does not hold for non-relativistic beams.

In the following it is shown, that the shunt impedance of the monopole mode

in 2-dimensional mu�n-tin structures is generally proportional to cosh2 (ky=�
),
where k is the free space wave number, y the transverse o�set and � and 
 the

usual relativistic factors.

1 Introduction

The interaction between charged particles and resonant or slow-wave structure �elds is
mainly described by the shunt impedance of the structure. Since it is usually desired that
all particles of a beam are equally e�ected by the �elds, the shunt impedance should be
constant over the beam thickness.

Unfortunately, for an input cavity structure of a low-voltage sheet beam klystron a
constant shunt impedance couldn't be achieved. This fact was somewhat surprising, since
this was the case even if the electric �eld in the gaps had been made 
at by varying their
width. Further numerical investigations turned out, that the ratio of the impedances at
the wall of the beam pipe and at the plane of symmetry is a constant and does neither
depend on the the number of cells or their width nor on the phase advance per cell.
However, it depends on the aperture of the pipe and the beam voltage.

This simple relation could hardly be accidental and has been investigated analytically.

2 Resonant Structures

Figure 1 shows a two-dimensional multi cell structure. For having it a resonant behaviour,
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Figure 1: Two-dimensional multi cell �-mode cavity for 91:39GHz

the beam pipe must be operated below cut-o� and for jyj < a we expect a steady electric
�eld that vanishes as z ! �1. Therefore, Ez can be represented by its spectrum as

Ez(y; z) =

1Z
�1

A(y; kz)e
�jkzzdkz; (1)

A(y; kz) =
1

2�

1Z
�1

Ez(y; z)e
jkzzdz: (2)

Since Ez must be a solution of the wave equation, setting

A(y; kz) = Y (y)B(kz) (3)

it is required that

0 =

1Z
�1

"
d2Y

dy2
� (k2z � k2)Y

#
B(kz)e

�jkzzdz: (4)

For the monopole mode we have Y (�y) = Y (y) and (4) is ful�lled by

Y (y) = cosh (
q
k2z � k2y): (5)

Thus equations (1) and (2) read

Ez(y; z) =

1Z
�1

B(kz) cosh (
q
k2z � k2y)e�jkzzdkz; (6)

B(kz) cosh (
q
k2z � k2y) =

1

2�

1Z
�1

Ez(y; z)e
jkzzdz: (7)

Taking the time dependence into account we have

Ez(y; z; t) = ej!t
1Z

�1

B(kz) cosh (
q
k2z � k2y)e�jkzzdkz: (8)
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Assume a point travelling with a constant velocity u0 parallel to the z-axis which reaches
z = 0 at t = t0. Its motion is described by

t(z; t0) = t0 +
z

u0
(9)

and the voltage experienced by this point is

V (y; t0) =

1Z
�1

Ez(y; z; t(z; t0))dz; (10)

= ej!t0
1Z

�1

E(y; z)ej!z=u0dz: (11)

But this integral is known, it is just equation (7) for kz = !=u0 and the experienced
voltage is therefore

V (y; t0) = 2�B(!=u0) cosh (
q
(!=u0)2 � k2y)ej!t0 : (12)

This simple result may be somewhat surprising since we got the voltage without actually
knowing the electric �eld. We only have to know its z-related spectrum at kz = !=u0.
This may be explained as follows: Equation (8) expresses Ez by an in�nite number of
waves travelling in z-direction, all having di�erent phase velocities uph = !=kz. But
the integrating point is synchronous only with one of these waves, namely that with
uph = u0. Thus, the experienced voltage is proportional to the amplitude B(!=u0) of this
synchronous wave. The phase o�set between the point and the wave is expressed by ej!t0 .

Making use of the relativistic factors � = u0=c0 and 
�2 = 1 � �2 the wavenumber
expressions simplify and the voltage amplitude reads

V (y) = 2�B(
k

�
) cosh (

k

�

y): (13)

The constant B(k=�) which is still unknown can be determined if the experienced
voltage is known for a speci�c value of y. In the case of a single gap, the voltage at the
walls of the beam pipe is usually considered as known which could have been adapted for
the more general case considered here. However, since we are interested in the principal
dependence only we simply use the voltage at y = 0 for normalization

V (y) = V (0) cosh (
k

�

y): (14)

If the average power dissipated by the walls for a given �eld is Pd, the shunt impedance
of the resonator is de�ned by R = V 2=Pd. Thus, we �nally have for the shunt impedance
of a two-dimensional resonant structure

R(y) = R(0) cosh2 (
k

�

y): (15)
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3 Periodic Structures

The relations for periodic slow-wave transmission lines are essentially the same, but the
expression of the electric �eld by its spectrum is somewhat harder to derive. Therefore
we will make use of Floquet's theorem stating that for a given mode of oscillation, at a
given frequency, for all �eld components the relation

f(z + L) = cf(z) (16)

holds, where L is the period length of the structure and c a certain complex constant. If
the structure is free of losses, c is of magniutude 1 yielding

Ez(z + L) = e�j�'Ez(z); (17)

where �' is the phase advance per cell. Obviously, the function

F (z) = ej
�'

L
zEz(z) (18)

is periodic in z with the period length L, since

F (z + L) = ej
�'

L
z ej�'Ez(z + L)| {z }

Ez(z)

= F (z) (19)

and may be expanded in a Fourier series

ej
�'

L
zEz(y; z; t) = ej!t

1X
i=�1

Ai(y)e
�j 2�i

L
z: (20)

Since Ez must be a solution of the wave equation, for the monopole mode we have

Ai(y) = Bi cosh (
q
k2i � k2y); (21)

ki =
�'

L
+

2�i

L
(22)

and the electric �eld may �nally be expressed as

Ez(y; z; t) = ej!t
1X

i=�1

Bi cosh (
q
k2i � k2y)e�jkiz: (23)

If the way l of a point travelling with a constant velocity u0 is su�ciently long, it experi-
ences the voltage per meter

Eacc(y; t0) = lim
l!1

1

l

l=2Z
�l=2

Ez(y; z; t(z; t0))dz (24)

= ej!t0
1X

i=�1

Bi cosh (
q
k2i � k2y) lim

l!1

1

l

l=2Z
�l=2

e
�j( !

u0
�ki)zdz: (25)

Obviously, if the electric �eld does not contain a space harmonic with ki = !=u0, this
voltage vanishes. Otherwise we have an e�ective accelarating �eld of the magnitude

Eacc(y) = Eacc(0) cosh (
k

�

y): (26)

With the shunt impedance per meter de�ned as r = E2
acc=P

0

d, the �nal relation is therefore

r(y) = r(0) cosh2 (
k

�

y): (27)
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4 Derivation from Wake Potential

The same results can be derived using the wake potential for the mode under considera-
tion. As described by Vaganian/Henke1, the wake potential posesses the properties

curlsW = 0; (28)

divW? +
1


2
@Wz

@s
= 0: (29)

Here, the subscript s indicates di�erentiation with respect to s instead of z. From (28)
follows that W can be derived from a scalar potential

W = grad	 (30)

and (29) de�nes the equation for this potential

�
s	 = 0: (31)

Assuming again @=@x = 0, for the monopole mode the potential must be of the form

	(y; s) = cosh (k0y)[A0 cos (k0
s) +B0 sin (k0
s)]; (32)

where k0 is a complex constant. The z-component of the wake potential is therefore

Wz(y; s) = cosh (k0y)[A cos (k0
s) +B sin (k0
s)]: (33)

We now determine the constant k0. Assuming a single mode structure, if the structure
is resonant, Ez must be harmonic in time and the longitudinal wake must therefore be
harmonic in s. Furthermore, for a lossfree structure, the wake at s + u0=f must be the
same as at s since the the point s + u0=f experiences the same �eld as the point s {
exactly one rf-cycle later. Thus, the period length of Wz is u0=f and from 2� = k0
u0=f
the constant k0 is determined to be

k0 =
k

�

: (34)

But this equation also holds for a synchronous travelling wave, since the wavelength was
just u0=f . Thus, the longitudinal wake is always

Wz(y; s) = Wz(y; 0) cosh (
k

�

y): (35)

Since the voltage experienced by the point moving at s is �qWz(y; s), we have �nally
derived equation (14).

5 Practical values

For a 91:3GHz single gap cavity with a = 0:30mm, b = 0:88mm, g = 0:79mm and a
particle velocity of � = 0:302, equation (15) predicts R(0:2mm) � 3:3R(0).

The same geometry has been investigated with the �nite di�erence code Gd�dL. For
y � 0:25mm, the relative di�erence between (15) and the shunt impedances calculated by
the code has been less than 0:5%.

1Vaganian, S. and Henke, H. The Panofsky-Wenzel Theorem and General Relations for the Wake
Potential, TU-Berlin, internal note (TET-NOTE 93/016), December 1993
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