Serie 04

- 1. Ableitungen. Ein Polynom P(x) habe in x_0 eine Nullstelle mit der Vielfachheit $\gamma > 0$.
 - a) Seien $x_0 = 0$ und $\gamma = 2$. Zeigen Sie, daß die Funktion P(x) in x_0 ein strenges Extremum besitzt.
 - b) Gilt diese Aussage auch für $x_0 \neq 0$ (und $\gamma = 2$)?
 - c) Seien $x_0 = 0$ und $\gamma = 3$. Zeigen Sie, daß die Funktion P(x) in x_0 einen Wendepunkt hat
 - d) Überlegen Sie sich, warum bei $\gamma \ge 2$ und beliebigem x_0 gilt: γ gerade $\Rightarrow P(x)$ hat strenges Extremum in x_0 und γ ungerade $\Rightarrow P(x)$ hat Wendepunkt in x_0 .
- 2. Ableitungen. Bestimmen Sie sofern existent die absoluten Extrema von

$$f(x) = (x+3)^2(x-2)^3$$
 (1)

in den Intervallen

- a) [-2, 3] und
- b) $(-\infty, 0]$.
- 3. Ableitungen. Führen Sie eine Kurvendiskussion durch für

$$f(x) = \frac{(x+1)(x-2)}{(x-3)^2}.$$
 (2)

4. Ableitungen. Untersuchen Sie die Stetigkeit von f und f' in x = 0 für

$$f(x) = |x|, (3)$$

$$f(x) = \begin{cases} \sin(1/x), & \text{wenn } x \neq 0 \\ 0, & \text{wenn } x = 0 \end{cases}$$
 (4)

$$f(x) = \begin{cases} x \sin(1/x), & \text{wenn } x \neq 0 \\ 0, & \text{wenn } x = 0 \end{cases}$$
 (5)

$$f(x) = \begin{cases} x^2 \sin(1/x), & \text{wenn } x \neq 0 \\ 0, & \text{wenn } x = 0 \end{cases}$$
 (6)

5. Ableitungen. Seien f und g (im eigentlichen Sinne) im Intervall $[c, \infty)$ differenzierbar, wobei $g'(x) \neq 0$ in $[c, \infty)$. Weiterhin sei $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$, und $\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ existiere im eigentlichen oder uneigentlichen Sinne.

Zeigen Sie, daß dann die mittelbaren Funktionen $\phi(x) := f(1/x)$ und $\psi(x) := g(1/x)$ alle Voraussetzungen der ersten L'Hospitalschen Regel erfüllen!

Anmerkung: Folglich existiert $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ und es gilt

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$
 (7)