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Abstract

This paper gives a simple two-dimensional analysis for
the focusing of DC sheet electron beams by means
of periodic permanent magnet (PPM) structures in
three steps: 1. determination of the fields produced
by a PPM assembly, 2. derivation of a general form
of Busch’s theorem, 3. determination of the beam en-
velopes. The formulas derived provide a possibility
of fastly determining the induction needed for a given
beam.

1 INTRODUCTION

In microwave tubes, beam focusing means compensat-
ing the radial space charge forces by means of auxilary
fields. There are at least two advantages of using mag-
netic rather than electric fields: On the one hand, for
fast electrons magnetic fields are capable of produc-
ing greater forces. For instance, a magnetic field of
1T which can be achieved with usual permanent mag-
nets produces the same force on a β = 0.3 charge as
an electric field of 100MV which was very expensive
to generate. On the other hand, magnetic fields in-
fluence the electron pathes but do not modulate the
beam. Thus, for focusing purposes magnetic fields are
used.

The compressive force is usually achieved in two
steps: Right behind the gun (sometimes even within
the gun already) the beam is given a transverse ve-
locity component by means of a transverse magnetic
field. Then, a following longitudinal field provides the
actual focusing.

The simplest and commonly applied focusing meth-
od for cylindrical beams – Brillouin focusing1 – uses
a solenoid enclosing the beam as shown in figure 1.
At the entrance of this assembly the fringing field
makes the beam rotate around its axis and the main
field provides focusing. The induction needed to pre-
vent the beam from scalloping is the Brillouin field
BB =

√
2ωp/η, where ωp is the relativistic plasma fre-

quency of the beam and η the relativistic charge to
mass ratio for an electron. – This value will serve
for reference later. – Unfortunately, Brillouin focusing
cannot be used with sheet beams since the upper and
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1This name is due to Brillouin’s important work on electron

motion in magnetic fields, see [1].
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Figure 2: Periodic magnet focusing assembly

lower electrons would drift in different directions.
Another method – periodic magnet focusing – uses

a couple of reversely poled magnets as shown in figure
2. One period may be thought of consisting of two
solenoid sections with opposite fields. Since the trans-
verse velocity component of each beam electron alters
in sign from one half period to the next a net trans-
verse drift does not appear. Thus, periodic focusing is
well suited for sheet beams, too.

2 EVEN AND ODD STRUCTURES

Axial symmetry implies equal longitudinal fields across
the beam surface at each single downstream position.
In the planar case there are at least two possible types
of symmetry since the lower half structure can be
shifted with respect to the upper half, figures 3 and
4.

The first type corresponds to the axial symmetric
case and is of the quality

Bx(−x, z) = −Bx(x, z) (1)

Bz(−x, z) = Bz(x, z) (2)



Figure 3: Odd PPM assembly

Figure 4: Even PPM assembly

with By = 0. Since Bx is an odd function of x, I
call this type an odd structure. Because of the field
continuity, Bx(0, z) = 0.

The second type is of the quality

Bx(−x, z) = Bx(x, z) (3)

Bz(−x, z) = −Bz(x, z) (4)

again with By = 0, which is referred to as an even

structure. Here field continuity requires Bz(0, z) = 0.

From the fieldsymmetry follows a symmetric prop-
erty of the trajectories. Assuming an electric field with
an odd x-component and vanishing y-component, if
r = (x, y, z) is a trajectory then r′ = (−x,−y, z) and
r′ = (−x, y, z) are also trajectories for an odd and even
structure, respectively, figures 5 and 6. Considering
the symmetry of y(x, z) with respect to x, we find that
it is of the same type as that of the structure. Thus, an
odd structure distorts a finite sheet beam with respect
to y while an even structure preserves its shape.

3 FIELDS IN A PPM STRUCTURE

We simplify our considerations to an infinitively long
(and wide) periodic structure with infinitively long
permanent magnets. This should be quite realistic
since a real structure will become much longer than the
aperture and we are interested in the aperture fields
only. Thus, one magnet can be represented by only

Figure 5: Trajectories in a magnetic field of odd sym-
metry

Figure 6: Trajectories in a magnetic field of even sym-
metry

one magnetic surface charge σ = µ0M situated at the
magnet pole, and the field by a harmonic scalar po-
tential as B = −gradΦ.

3.1 Odd structure

The reduced problem for an odd structure is shown in
figure 7. While the conditions at z = 0 and z = λ/2
follow from the periodicity, the condition at x = 0
is just the property Bx(0, z) = 0 of an odd structure
as already mentioned in section 2. Since the surface
charge is an incontinuity we have to devide the expan-
sion area into two subareas I and II. For both areas,

Figure 7: Boundary conditions for a quarter odd struc-
ture



the conditions at z = 0 and z = λ/2 can be fulfilled
with a sine in z. The condition at z = 0 then requires
a hyperbolic cosine in x for area I and the condition at
x → ∞ requires an exponential function in x for area
II. Expanding the surface charge also we have

ΦI(x, z) =
∞
∑

i=1

ai cosh(kix) sin(kiz) (5)

ΦII(x, z) =

∞
∑

i=1

bi exp(−kix) sin(kiz) (6)

σ(z) =

∞
∑

i=1

σi sin(kiz), (7)

where ki = 2πi/λ and

σi =
4σ

πi
sin(πi/2) sin(πid/λ). (8)

The constants ai and bi can now be determined from
the conditions at the charged surface x = a/2: Conti-
nuity of the potential requires

ai cosh(kia/2) = bi exp(−kia/2) (9)

and the jump of its normal derivative requires

aiki sinh(kia/2) + biki exp(−kia/2) = σi. (10)

Thus we have

ai = σi/ki exp(−kia/2) (11)

bi = σi/ki cosh(kia/2). (12)

In order to have the field expression as simple as
possible, the higher order terms are checked against
their importants. Recalling that ai = 0 for even i and

ai ∝ 1/i2 sin(πid/λ) exp(−πia/λ) (13)

else, for a realistic structure one may have λ = 4d =
10a yielding

|a3/a1| = 6.05%

|a5/a1| = 0.56%

|a7/a1| = 0.05%.

Thus

Φ(x, z) ≈ Φ1 cosh
(

2π
x

λ

)

sin
(

2π
z

λ

)

(14)

Φ1 =
2λµ0M

π2
sin

(

π
d

λ

)

exp
(

−π
a

λ

)

(15)

is expected to be a quite good approximation of the
true magnetic potential within the whole aperture2.

2Although the expansion has been performed for x > 0 and
0 ≤ z ≤ λ/2 only, the result is valid for the whole aperture
−a/2 ≤ x ≤ a/2, −∞ < z < ∞, since the necessary information
entered through the boundary condition already.

Figure 8: Boundary conditions for a quarter even
structure

Finally, for the magnetic field we have

Bx ≈ −B0 sinh
(

2π
x

λ

)

sin
(

2π
z

λ

)

(16)

Bz ≈ −B0 cosh
(

2π
x

λ

)

cos
(

2π
z

λ

)

(17)

B0 =
4µ0M

π
sin

(

π
d

λ

)

exp
(

−π
a

λ

)

. (18)

3.2 Even structure

The even problem, as shown in figure 8, is attacked
in the same manner as for the odd structure. The
boundary conditions are matched by

ΦI(x, z) =
∞
∑

i=1

ai sinh(kix) sin(kiz) (19)

ΦII(x, z) =

∞
∑

i=1

bi exp(−kix) sin(kiz) (20)

again with ki = 2πi/λ. Continuity and the jump con-
dition of the normal derivative at x = a/2 require

ai sinh(kia/2) = bi exp(−kia/2) (21)

aiki cosh(kia/2) + biki exp(−kia/2) = σi (22)

yielding

ai = σi/ki exp(−kia/2) (23)

bi = σi/ki sinh(kia/2) (24)

where σi is still given by equation (8). Since (23)
equals (11), within the aperture we have as good ap-
proximation

Φ(x, z) ≈ Φ1 sinh
(

2π
x

λ

)

sin
(

2π
z

λ

)

(25)

Bx ≈ −B0 cosh
(

2π
x

λ

)

sin
(

2π
z

λ

)

(26)

Bz ≈ −B0 sinh
(

2π
x

λ

)

cos
(

2π
z

λ

)

(27)

where Φ1 and B0 are still given by (15) and (18), re-
spectively.



4 A GENERAL FORM OF BUSCH’S

THEOREM

The equations of motion for a free charge can be solved
analytically only if certain restrictions apply to the
fields. Even when assuming ż = const. and Ey =
Ez = 0 – this should be quite realistic for our focusing
problem – these equations still read

d

dt
(γm0ẋ) = −e(Ex + ẏBz − żBy) (28)

d

dt
(γm0ẏ) = −e(żBx − ẋBz). (29)

It is not obvious that this problem can be solved at
all.

Busch’s theorem3 is known of providing a solution
for ϕ̇ in the axial symmetric magnetic focusing prob-
lem. But this corresponds to the determination of ẏ for
our planar problem which is actually the basic prob-
lem for solving (28),(29). Therefore a general form of
Busch’s theorem in cartesian coordinates is derived in
the following.

Problem: Solve the initial value problem

d

dt
(γm0ṙ) = −e(E + ṙ × B) (30)

r(t0) = r0 (31)

ṙ(t0) = ṙ0 (32)

for ẏ(r) when the given fields are restricted to

Ey = 0 (33)

∂B/∂t = 0 (34)

∂B/∂y = 0. (35)

Solution: For the y component of equation (30) we
have with (33)

ṗy = −eey · (ṙ × B), (36)

py − py0 = −e

t
∫

t0

(B × ey) · ṙdt. (37)

Since the integrand does not depend on the parameter
t, equation (34), this is a parameter form of the line
integral

py − py0 = −e

∫

L

(B × ey) · dr, (38)

where L is the (unknown) uniquely defined trajectory
solving the whole initial value problem. But this inte-
gral does not depend on the path of integration since
B × ey is a conservative field which follows with (35)
from

curl(B × ey) ≡ ∂B/∂y − eydivB ≡ 0 (39)

3This name probably arises from his work on electronic mo-
tion in axial symmetric fields, see [2].

Figure 9: Electron trajectory and path of integration

and the legitimate assumtion that B is defined on
a simply connected region. Thus we may choose a
(well known) path making the integral easy to evalu-
ate. Since normally the conditions at the cathode are
known and the field is symmetric, the path of integra-
tion is usually chosen from the point of emission across
the cathode to the plane of symmetry, along this plane
and finally to the current electron position as shown in
figure 9. Defining the relativistic charge to mass ratio
as η = e/γm0, the problem is finally solved by

ẏ =
γ0

γ
ẏ0 − η

r
∫

r0

(B × ey) · dr, (40)

since its R.H.S. is a function of x and z only, indeed.
This equation may be called a general representation
of Busch’s theorem.

Since the problem was solved in a mathematical
manner, at least the integral from (38) should be given
a physical meaning: Consider a vector w = wey mov-
ing together with the charge along L thus defining a
surface, figure 9. Since w × dr is a differential ele-
ment of this surface, recalling (35), the magnetic flux
Ψ through this surface is

Ψ =

∫

L

B · (w × dr) = w

∫

L

(B × ey) · dr. (41)

Defining Ψ′ = Ψ/w, the physical meaning of the func-
tion

Ψ′ =

∫

L

(B × ey) · dr (42)

turned out to be the magnetic flux per unit length
through the surface generated by the trajectory to-
gether with ey.

For further information on Busch’s theorem see [3]
page 44 and [4] page 35.

5 CONDITIONS FOR SPACE

CHARGE BLANCED FLOW

Consider a single beam electron – and its trajectory
r(t) – which left the cathode at t = t0 with ẏ0 =



Figure 10: Trajectory, path of integration and consid-
ered fluxes

ẏ(t0) = 0, has already passed the anode at t = t1 with
ẋ1 = ẋ(t1) = 0 and is now flying through the focusing
structure. Since its speed results in first order from
the DC acceleration we would expect that for t ≥ t1

v = |ṙ| ≈ ż ≈ const. (43)

Thus, its motion in z is simply

z = z1 + v(t − t1). (44)

and for its motion in x we have

ẍ = −η(Ex − vBy + ẏBz). (45)

Obviously, for sheet beams there are only two forces
controlling the beam envelope: the defocusing force
Ex − vBy which is due to the space charge and the
focusing force ẏBz arising from the field of the magnet
assembly. If these forces are equal in magnitude but
of opposite sign, the net force vanishes and the flow is
said to be space charge balanced.

5.1 Uniform-Field focusing

As already mentioned in section 1, focusing with a uni-
form field cannot be applied with sheet beams. How-
ever, the analysis is straight forward and their results
will serve for reference later.

As pointed out in some more detail in [5], the defo-
cusing force is a constant and given by

Ex − vBy =
̺1

ε0γ2
x1, (46)

where ̺1 is the charge density at the reference position
z1 = z(t1).

For determining the focusing force we now make use
of Busch’s theorem, equation (40), involving ẏ0 = 0
and choosing the path of integration as shown in figure
10. Thus, Busch’s theorem reads

ẏ = −η(Ψ′

1
+ Ψ′

2
+ Ψ′

3
+ Ψ′

4
) (47)

where

Ψ′

i =

∫

Li

(B × ey) · dr. (48)

If no flux links the cathode, Ψ′
1

vanishes. But Ψ′
2

and
Ψ′

3
also vanish since the fringing fields are symmetric

to x = 0. And since the longitudinal field is simply
Bz = B0,

Ψ′

4
= −xB0 (49)

ẏ = xω0, (50)

where ω0 = ηB0 has been introduced for convenience.
Thus, the focusing force for uniform-field focusing
reads

ẏBz = xω0B0. (51)

5.2 Periodic magnet focusing

If no assumtions are made on the the magnetic field
in the gun except that no flux links the cathode, Ψ′

1

vanishes but the constant Ψ′
2

remains unknown. Ψ′
3

and Ψ′
4

can be determined from the known focusing
fields by means of (48). Since for x ≪ 1 sinhx ≈ x
and coshx ≈ 1, assuming that

|x| ≪ λ/2π, (52)

which will be checked against its correctness later, the
integration of (16), (17) and (26), (27) yields

Ψ′

3odd
= 0 (53)

Ψ′

4odd
= B0x cos

(

2π
z

λ

)

(54)

Ψ′

3even
= B0

λ

2π

[

cos
(

2π
z

λ

)

− cos
(

2π
z1

λ

)]

(55)

Ψ′

4even
= 0. (56)

Thus we have

−ẏodd/η = Ψ′

2odd

+B0x cos
(

2π
z

λ

)

(57)

−ẏeven/η = Ψ′

2even
− B0

λ

2π
cos

(

2π
z1

λ

)

+B0

λ

2π
cos

(

2π
z

λ

)

(58)

In order to prevent the beam from an average trans-
verse drift the constants have to be zero. Thus the
flux Ψ′

2
must be chosen to

Ψ′

2odd
= 0 (59)

Ψ′

2even
= B0

λ

2π
cos

(

2π
z1

λ

)

(60)

and the equations finally read

ẏodd = −xω0 cos
(

2π
z

λ

)

(61)

ẏeven = − λ

2π
ω0 cos

(

2π
z

λ

)

, (62)



where ω0 = ηB0 has been introduced for convenience.
Together with the longitudinal fields

Bzodd
= −B0 cos

(

2π
z

λ

)

(63)

Bzeven
= −B0

2πx

λ
cos

(

2π
z

λ

)

(64)

the focusing force turns out to be the same for both
structure types

ẏBz = xω0B0 cos2
(

2π
z

λ

)

. (65)

However, recalling (52) the contributions of the ve-
locities and the fields to this force are very different:
While for an odd structure the transverse motion is
very small and the longitudinal field is strong, for an
even structure the motion is considerable and the lon-
gitudinal field is weak.

Finally, with the two forces derived (45) now reads

ẍ + xω2

0
cos2(ωmt) − ω2

px1 = 0. (66)

Here, ωm = 2πv/λ is the magnet frequency4 and
ωp =

√

−η̺1/ε0γ2 is the relativistic plasma frequency
of the beam. Since no assumtion has been made on
the position of the electron under consideration with
respect to the beam, equation (66) is valid for every
single beam electron. Understanding x to be the coor-
dinate of a surface electron – i.e. half the beam thick-
ness – this equation is referred to as the beam equa-
tion.

6 THE BEAM ENVELOPE

Unfortunately, the nonlinear beam equation, wich can
be rewritten as

ẍ + ω2

x (1 + cos(2ωmt))x − ω2

px1 = 0 (67)

turns out to be of the Mathieu type. – Obviously, if
the braced term was not present, this equation would
describe an oscillation in x with the frequency ωx =
ω0/

√
2. – However, assuming that

ωm ≫ ωx, (68)

which will be discussed later, only the average of the
timedependent coefficient should enter this equation,
i.e.

ẍ + ω2

x

(

x −
ω2

p

ω2
x

x1

)

= 0. (69)

Taking into account the initial values x(t1) = x1 and
ẋ(t1) = ẋ1 the solution is

x

x1

=
ω2

p

ω2
x

+
(

1 −
ω2

p

ω2
x

)

cos ωx(t − t1). (70)

Berlin, November 27 1997

4The field of the focusing structure appears to the electrons
as a timevariant field oscillating with ωm.
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