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Abstract

Making use of geometry and field symmetries when simulating rf structures with
electromagnetics codes like GdfidL or Mafia may result in wrong values for the shunt
impedance, since the particle-to-wave coupling coefficients depend on the interaction
length in a nonlinear manner.

In this paper the influence of the particle-to-wave coupling coefficients on the
shunt impedance is investigated and simple rules for obtaining correct impedance
values are derived.

1 Introduction

When simulating rf structures with numeric codes, for saving execution time and memory
symmetric properties of the stuctures and the fields are usually taken into consideration.
Since the volume to surface ratio is usually kept constant by this procedure, the quality
factor is exactly determined by the code. However, the shunt impedance calculation may
be influenced this way, since 1) the surface area changes but the interaction length (as seen
by the code) is the same or 2) both the surface area and the interaction length changes.

In the first case, the impedance calculated by the code can be corrected afterwards by
simply multiplying it with the reduced to original surface ratio. In the second case, the
dissipated power can be corrected as in the first case. However, the voltage experienced (by
a particle or beam) is a linear function of the reduced to original interaction length ratio
only if additional conditions are met, which are subject to the following considerations.

2 Coupling with a single space harmonic

Consider a single space harmonic with a z-component of electric field given by

E(z, t) = Êej(ωt−kz) (1)

and a particle moving along the z-axis with constant velocity ub,

z = z0 + ub(t − t0). (2)
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Then, the electric field experienced by the particle – which is just the field at its position
– is Ẽ = E[z, t(z)], where t(z) is given by (2). Defining the particle wave number as
kb = ω/ub, this field reads

Ẽ(z) = Êej(ωt0−kbz0)ej(kb−k)z. (3)

Obviously, Ẽ is a constant if and only if the particle velocity equals the phase velocity
of the wave, kb = k. If additionally the particle passes z = 0 at t = 0, z0 = ubt0, the
experienced electric field is simply Ẽ = Ê.

Furthermore, consider the interaction to occur on a lenght l with the center at z = z0

(this point is passed by the particle at t = t0). Then, the average experienced electric
field is given by

Ē =
1

l

z0+l/2
∫

z0−l/2

Ẽdz, (4)

Ē =
sin (kb − k)l/2

(kb − k)l/2
Êej(ωt0−kz0). (5)

The main factor determining the average to maximum field ratio is the particle-to-wave
coupling coefficient

M =
sin (kb − k)l/2

(kb − k)l/2
, (6)

which takes its maximum for kb = k, i.e. if the particle is synchronous with the wave.
With (6) and (3), equation (5) can be written as

Ē = MẼ(z0), (7)

stating that the average experienced field is just the product of the coupling coefficient
and the field experienced by the particle when passing the center of the interaction region.

3 Coupling with a superposition of space harmonics

Beeing given the electric field

E(z, t) = ejωt
∑

i

Êie
−jkiz (8)

and the particle trajectory (2). Since no non-linear operations have been performed when
deriving (7), the net average experienced field is given by the superposition of the single
averages

Ē =
∑

i

MiẼi(z0) = ejωt0
∑

i

MiÊie
−jkiz0 (9)

where the coupling coefficients are given by

Mi =
sin (kb − ki)l/2

(kb − ki)l/2
. (10)
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4 Impedances of E01p resonators

As first application of the results from the previous section I will investigate the im-
pedances of rectangular cavity resonators in E01p-mode with respect to their numeric
simulation.

By definition, the shunt impedance of such a cavity is given by

R = |Ēd|2/P, (11)

where Ē is the average field experienced by a particle, d the cavity and thus the interaction
length and P the average power dissipated in the cavity walls.

When the cavity is simulated with numeric codes, symmetries are usually taken into
consideration, and thus the surface A of the cavity is reduced to Ac and the interaction
length from d to l. Defining the reduction ratios in surface area and interaction length as

ra = A/Ac (12)

rl = d/l, (13)

the code values subscipted by c, the formula for determining the actual impedance from
that predicted by the code reads

R =
r2
l

ra

∣

∣

∣

∣

∣

Ē

Ēc

∣

∣

∣

∣

∣

2

Rc, (14)

where it has been assumed, that the reduction in dissipated power equals that in surface
area.

Obviously, the main question to answer is that about the actual to code predicted
average electric field ratio. If this ratio is not unity, the impedance predicted by the code
is usually considered to be uncorrectable, since the code user was forced to evaluate the
following formulas by hand.

4.1 E010 rectangular resonators

Consider a rectangular cavity resonator of length d excited at E010 mode. Its electric field
is given by

E(z, t) = Êejωt, (15)

which may be considered to be (1) with k = 0. Placing the origin of the coordinate system
at the center of the cavity, the average experienced voltage is Ē = MẼ(0) = MÊejωt0

with the coupling coefficient1 given by

M =
sin kbd/2

kbd/2
. (16)

1The coupling coefficient (16) is also called transit time factor, since the reduction in voltage for k = 0
may be explained by means of the time it takes to cross the cavity: A particle having a velocity ub needs
a time τ = d/ub = dkb/ω to cross a gap of the width d. If the frequency of the cavity field was very low,
the particle would not consider its change in time, but it does for high frequencies. Thus, the reduction
in experienced voltage depends rather on the change in phase ϕ = ωτ = kbd than the transit time. This
phase is called transit angle and the reduction can be calculated to be sin(ϕ/2)/(ϕ/2) which is just (16).
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When simulating this cavity with an electromagnetics code, one was attempt to place
an electric wall at z = 0 and a magnetic wall at y = 0, reducing the interaction length to
l = d/2 and changing the center to z0 = d/4. Since the code field amplitude Êc is equal to
the actual one Ê, the average field calculated by the code was Ēc = McẼ(d/4) = McÊejωt0

with the coupling coefficient

Mc =
sin kbd/4

kbd/4
, (17)

and the field ratio was
∣

∣

∣

∣

∣

Ē

Ēc

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

M

Mc

∣

∣

∣

∣

. (18)

Obviously, (18) becomes unity only for kb = 0 which meant an infinit particle velocity.
Thus, a cavity in E010-mode cannot be correctly simulated when making use of the z = 0
symmetry.

4.2 E011 rectangular resonators

The field of a rectangular cavity resonator operated at E011-mode is

E(z, t) = Ê sin(πz/d)ejωt, (19)

which may be rewritten as

E(z, t) = ejωt(Ê1e
−jk1z + Ê2e

−jk2z) (20)

with Ê1 = −Ê2 = jÊ/2 and k1 = −k2 = π/d, where index 1 refers to the forward and
index 2 to the backward wave. Applying the general formulas from section 3, with z0 = 0
the average field becomes

Ē = ejωt0jÊ/2(M1 − M2), (21)

M1,2 =
sin (kb ∓ π/d)d/2

(kb ∓ π/d)d/2
. (22)

Applying magnetic walls at z = 0 and y = 0 for simulation, the interaction length
becomes l = d/2 and the center moves to z0 = d/4. Thus, the code values are

Ēc = ejωt0jÊ/2(M1ce
−jπ/4 − M2ce

jπ/4), (23)

M1,2c =
sin (kb ∓ π/d)d/4

(kb ∓ π/d)d/4
, (24)

yielding for the field ratio

∣

∣

∣

∣

∣

Ē

Ēc

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

M1 − M2

M1c − jM2c

∣

∣

∣

∣

∣

2

. (25)
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If the particle is synchronous with the forward wave kb = π/d, the coefficients for the
forward wave become unity and there is no coupling with the backward wave, but the
code calculates M2c = 2/π. Thus, the field ratio for synchronism reads

∣

∣

∣

∣

∣

Ē

Ēc

∣

∣

∣

∣

∣

2

sync

=
1

1 + 4/π2
≈ 0.712. (26)

As for the E010 resonance, making use of the symmetry with respect to z = 0 yields an
uncorrectable value for the shunt impedance.

4.3 E01p rectangular resonators

In the general case, the wavenumber is k = pπ/d and the field may be written as

E(z, t) = Êejωt(e−jkz + ejpπejkz) (27)

resulting in an average field

Ē = Êejωt0(M1 + ejpπM2), (28)

M1,2 =
sin (kb ∓ k)d/2

(kb ∓ k)d/2
. (29)

For the simulation, a general interaction length l with a center at z0 may be considered
and the corresponding equations read

Ēc = Êejωt0(e−jkz0M1c + ejpπejkz0M2c), (30)

M1,2c =
sin (kb ∓ k)l/2

(kb ∓ k)l/2
. (31)

Thus, the field ratio becomes

∣

∣

∣

∣

∣

Ē

Ēc

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

M1 + ejpπM2

M1c + ejpπej2kz0M2c

∣

∣

∣

∣

∣

2

. (32)

This equation will be evaluated in two different ways: At first, as for the E010- and E011-
resonances the symmetric properties are taken into account and afterwards proper values
for l and z0 are determined making (32) equal to unity.

Making use of the symmetries at z = 0 and y = 0, we have l = d/2 and z0 = d/4 and
for synchronous operation kb = k the ratio reduces to

∣

∣

∣

∣

∣

Ē

Ēc

∣

∣

∣

∣

∣

2

sync

=















1

1 + 4/(pπ)2
for p = 1, 3, . . .

1 for p = 2, 4, . . .

. (33)

Obviously, the impedance predicted by the code may be simply corrected for even values
of p, i.e. if an electric wall is placed at z = 0. For odd values of p (magnetic wall at
z = 0), no simple correction can be applied. However, for large p the R.H.S. of (33) may
be replaced by unity – its value takes ≈ 0.96 for p = 3 already.

5



Now I will determine values of l and z0 for |Ē| = |Ēc|. – Of course, a trivial solution
was l = d and z0 = 0, meaning to simulate the full resonator. – Although there may be
others, a practical non-trivial solution can be derived from assuming the particle to be
synchronous with the forward wave, which is generally the case due to the fact that this
is a neccessary condition for achieving maximum shunt impedance. Then, M1 = M1c = 1
and M2 = 0 yielding the neccessary condition M2c = 0 or kl = nπ with n a positive
integer number, or more intuitive

l = nλ/2, n = 1, 2, . . . . (34)

Thus, for having the code calculating the correct average field, the simulated geometry has
to be at least half a wavelength long, its length must be a multiple of half the wavelength
and the particle velocity must equal the phase velocity of the forward wave.

5 Impedances of periodic structures

The shunt impedance (per unit length) for periodic structures is defined as

r = |Ē|2/P ′, (35)

where Ē is the average electric field experienced by a particle and P ′ the power per
unit length dissipated in the waveguide walls. Since the structure is considered to be
infinitively long, which is implied by ’periodic’, the interaction length is consequently also
considered to be infintively long and the definition of the average experienced field must
be modified to

Ē = lim
l→∞

1

l

z0+l/2
∫

z0−l/2

Ẽ(z)dz. (36)

From Floquet’s theorem it follows that the electric field of a loss-free periodic structure
with period L may be written as

E(z, t) = ejωt
∞
∑

i=−∞

Êf
i e−jkiz + Êb

i e
jkiz, (37)

where the superscripts f and b stand for the forward and backward wave, respectively
and the wave numbers are given by

ki =
∆ϕ

L
+

2πi

L
. (38)

For the phase advance per period we have ∆ϕ ∈ [0, π]. As long as ∆ϕ does not take
its limits, all wavenumbers are different and the exponential functions in (37) are linear
independent. However, for ∆ϕ = 0 we have ki = −k−i and for ∆ϕ = π we have ki =
−k−(i+1) so that two functions of (37) become linear dependent, respectively.

Now, a particle having the trajectory (2) experiences the average field

Ē = ejωt0
∞
∑

i=−∞

M f
i Êf

i e−jkiz0 + M b
i Ê

b
i e

jkiz0 , (39)

M f,b
i = lim

l→∞

sin(kb ∓ ki)l/2

(kb ∓ ki)l/2
=







1 for kb = ±ki

0 for kb 6= ±ki

(40)
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Since for 0 < ∆ϕ < π all wavenumbers are different, at most one single coupling coefficient
can be different from zero, i.e. only one single space harmonic contributes towards the
average experienced field. For ∆ϕ = 0 and ∆ϕ = π the forward and backward waves
become dependent and two coupling coefficient may be different from zero. However, due
to the dependence it holds that only one single space harmonic contributes towards the
average experienced field. Therefore, this field reduces to

Ē = ejωt0



















Êf
i e−jkiz0 for kb = ki

Êb
i e

jkiz0 for kb = −ki

0 for |kb| 6= |ki|

(41)

and is different from zero if and only if the electric field contains a space harmonic with
a wavenumber equal to that of the particle. Thus, it makes sense to consider only the
synchronous case kb = kj, and the field further reduces to

Ēsync = ejωt0Êf
j e−jkjz0 . (42)

For the 0- and π-mode, the R.H.S. of (41) and (42) may be multiplied by 2.
When simulating such a structure with a numeric code, its length must of course be

reduced, lets say to l. If its center is z0, the field calculated be the code is

Ēc = ejωt0
∞
∑

i=−∞

M f
icÊ

f
i e−jkiz0 + M b

icÊ
b
i e

jkiz0 , (43)

M f,b
ic =

sin(kb ∓ ki)l/2

(kb ∓ ki)l/2
. (44)

In general, all coupling coefficients are different from zero making the average field difficult
to evaluate. Hence, only the synchronous case kb = kj is considered here, where the
average field is still given by (43), but the coupling coefficients simplify to

M f
ic,sync =

sin π(j − i)l/L

π(j − i)l/L
, (45)

M b
ic,sync =

sin(∆ϕ + π(j + i))l/L

(∆ϕ + π(j + i))l/L
(46)

and the field ratio reads

∣

∣

∣

∣

∣

Ē

Ēc

∣

∣

∣

∣

∣

2

sync

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

Êf
j

∞
∑

i=−∞

M f
ic,syncÊ

f
i e−jkiz0 + M b

ic,syncÊ
b
i e

jkiz0

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (47)

What values should be chosen for l (and z0) in order to have this ratio equal to unity?
Although there may be others, one way to obtain a practical solution is to find a certain
lenghth l that makes all coupling coefficients zero (except that for the j-th forward space
harmonic, which is equal to unity for all l). Let’s start with the forward waves, equation
(45). Obviously, the sine becomes zero if the simulated length l is an integer multiple of
the period lenghth L,

l = nL, n = 1, 2, . . . . (48)
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Continuing with equation (46) we immediately see, that coupling with the backward waves
cannot be avoided. However, this doesn’t neccessarily mean that the values for the shunt
impedance become totally wrong, since the ratio (47) still depends on the wave amplitudes
Êb

i .
For travelling wave applications all Êb

i vanish and (47) becomes unity already under
condition (48). For standing waves we have |Êb

i | = |Êf
i |, where usually the condition

|Êf
0 | ≫ |Êf

i | applies.

8


