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The formation of bunches in a velocity modulated electron beam can be ex-
plained by means of space charge waves.

This paper gives an introduction to one-dimensional plasmaoscillations and
space charge waves. As applications, the plasma resonance between two paral-
lel plates is considered and the beam current modulation produced in a klystron by
a modulating cavity resonator is determined.

1 Introduction

In 1929, Lewi Tonks and Irwing Langmuir observed electron oscillations in ionized gases [1].
While the pure existence of oscillations in electron clouds has not been much surprising –
oscillations in air have been well known this time – its properties have been: In first order,
the frequency of these oscillations depend on the electron density but not on the boundary
conditions. Thus, in contrast to oscillations in air, the oscillation frequency of a plasma is a
property of the medium and not a property of the surrounding geometry.

These oscillations and other phenomenons appearing in electron clouds may be explained by
the space charge wave theory, which applies M’s equations and the force equation of
L.

2 The eigenfrequency phenomenon

Assume an infinitely extended plasma with electron charge density ̺0 and ion charge density
−̺0. Due to the large inertia of the ions, if an rf field acts on the plasma, with respect to the
electrons the motion of the ions can be neglected. If the electrons between−z0 and z0 are
compressed at both sides to the area between−z andz (figure 1), the electron charge remains
constant while the charge of the stationary ions changes

Qe = ̺0A2z0

Qi = −̺0A2z.
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Figure 1: One-dimensional electron cloud excited by compression.

The total charge between−z andz is therefore

Q(z) = 2A̺0(z0 − z).

Since there are no variations inx andy, there will be az-component of the electric field only
and Gauss law yields the simple relation

Q(z) = ε0A[E(z) − E(−z)].

From the symmetry of the problem,E(−z) = −E(z) and thus

E(z) =
̺0

ε0
(z0 − z).

The acceleration of the electrons atz consequently reads

z̈ = −ηE(z) = η
̺0

ε0
(z − z0)

yielding the homogeneous oscillation equation

z̈ − η
̺0

ε0
(z − z0) = 0

with the eigenfrequency of oscillation

ωp =

√

−η
̺0

ε0

which is calledplasma frequency. Here,η = 1.759× 1011As/kg is the specific electron charge
and̺0 the (negative) electron charge density. Typical values forthe plasma frequency of elec-
tron beams used in klystrons areωp = 1 . . . 10GHz.

3 Theory of one-dimensional space charge waves

Space charge waves are related rather to hydrodynamics thanto electrodynamics. The funda-
mental laws for their derivation are

• M’s equations (divergence and continuity),

• L’s force equation,
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• and the convection current equation.

Instead of starting with the fundamental hydrodynamic laws(see [2], chapter 10), since I am
interested in wave solutions only, I will assume forward andbackward waves for all components
under consideration. Afterwards these fields will be checked against the laws mentioned above
which will result in conditions for the wave amplitudes.

3.1 The field ansatz

The fields under consideration are the charge density, the velocity, the (convection) current den-
sity, the electric and the magnetic field, which are functions of z and t only; the vectorfields
consist of az-component only. All fields consist of a stationary (subscript 0), a forward (sub-
scriptF) and a backward (subscriptB) wave part1. Furthermore, the magnetic field is assumed
to be zero2.

̺(z, t) = ̺0 + ̺Fej(ωt−kz) + ̺Bej(ωt+kz) (1)

v(z, t) = v0 + vFej(ωt−kz) + vBej(ωt+kz) (2)

J(v, z) = J0 + JFej(ωt−kz) + JBej(ωt+kz) (3)

E(z, t) = E0 + EFej(ωt−kz) + EBej(ωt+kz) (4)

H(z, t) = 0 (5)

These equations describe the electron motion only. Due to the large inertia of the ions, for the
frequencies under consideration the corresponding fields for the ions are considered to consist
of dc components only. Thus,̺ion, vion andJion are constants and the total fields3 may be written
as

̺total = ̺(z, t) + ̺ion

Jtotal = J(z, t) + Jion.

3.2 Conditions for the wave amplitudes

3.2.1 The convection current equation

For the convection current density of the electrons

J = ̺v,

and with (1) and (2)

J = ̺0v0 + (̺0vF + ̺Fv0)e
j(ωt−kz) + (̺0vB + ̺Bv0)e

j(ωt+kz)

+(̺FvF)e2j(ωt−kz) + (̺BvB)e2j(ωt+kz) + (̺FvB + ̺BvF)e2j(ωt).

Since these six components are lineary independent a comparison with equation (3) yields

J0 = ̺0v0

JF = ̺0vF + ̺Fv0

JB = ̺0vB + ̺Bv0.

1For the theory it was enough to set up a forward wave only. However, in the application example section 4.1 we
will need the backward wave to match our boundary conditions.

2This is not obvious, indeed. But what is the meaning of ansatz?
3A total velocity does not exist. Try to imagine what physicalmeaning such a field should have.
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For the second order components we may write

J2F = ̺FvF

J2B = ̺BvB

J2S = ̺FvB + ̺BvF .

To keep the analysis linear, we have to make a first small signal approximation. Usually, it
is assumed that the magnitudes of the rf components are much smaller than these of the dc
components. However, since this analysis shall be valid forstationary electron clouds also
(v0 = 0), we must be less restrictive here. We will assume

̺F ≪ ̺0 and ̺B ≪ ̺0 for v0 = 0 (6)

vF ≪ v0 and vB ≪ v0 for v0 , 0. (7)

In this way it is guaranted that all second order rf components are much less in magnitude than
the first order rf components which may therefore be neglected.

To be complete, the convection current density of the ions readsJion = ̺ionvion, which reduces
to

Jion = ̺ionvion.

3.2.2 The divergence equation

For the divergence equation we have

ε0divE = ̺total

and with (4) and (1)

−jkε0(EFej(ωt−kz)
− EBej(ωt+kz)) = ̺0 + ̺ions + ̺Fej(ωt−kz) + ̺Bej(ωt+kz). (8)

Since the dc component of the electric field may be chosen arbitrarily

E0 = 0

EF = j
̺F

kε0

EB = −j
̺B

kε0
.

Additionally, equation (8) requires that

̺0 = −̺ions, (9)

which is discussed in section 3.2.5.

3.2.3 The induction equation

The next law to fulfill is the induction equation which reads

curlH = Jtotal+ ε0
∂E
∂t
. (10)
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Taking the divergence we have

jk(JFej(ωt−kz)
− JBej(ωt+kz)) = ωkε0(EFej(ωt−kz)

− EBej(ωt+kz)),

JF = −jωε0EF

JB = −jωε0EB.

Inserting these fields into (10) yields the surprising relation

curlH = (J0 + Jion)ez, (11)

meaning that the displacement current totally compensatesthe rf convection current. Thus, no rf
component of magnetic field is required. However, having themagnetic field vanishing totally,
(11) requires that

J0 = −Jion, (12)

which is discussed in section 3.2.5.

3.2.4 The force equation

Finally, L’s force equation

ṗ = q(E + v × B)

must be satisfied. Since there is no magnetic field and motion is in z-direction only, it reduces
to (see appendix A)

dv
dt
=

q
m0γ3

E.

With respect to the electrons, the specific chargeq/m0 of the ions may be neglected; the ion
velocity is considered to be constant. However, the rest specific charge−η0 = −e/me0 of the
electrons is large and an rf electric field will considerablyinfluence their speed.

With the relativistic specific electron charge−η = −e/me, inserting (2) and (4) into

v̇ = −ηE/γ2

yields

jvFej(ωt−kz)(ω − kv0) + jvBej(ωt+kz)(ω + kv0) = −η/γ
2(EFej(ωt−kz) + EBej(ωt+kz)),

EF = −j
ω − kv0

η/γ2
vF

EB = −j
ω + kv0

η/γ2
vB.

Here the total time derivative of the phaseϕ = ωt ± kz,

dϕ
dt

=
∂ϕ

∂t
±
∂ϕ

∂z
∂z
∂t

= ω ± kv(z, t)
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and the small signal approximation

ω ± kv(z, t) ≈ ω ± kv0

which may be rewritten as

vF ≪ ω/k and vB ≪ ω/k for v0 = 0 (13)

vF ≪ v0 and vB ≪ v0 for v0 , 0

have been applied.

3.2.5 Discussion of the ion contribution

Including space charge into unbounded considerations may lead to an inconsistency regarding
the dc components of the electric and the magnetic field.

Starting with the electric field, let’s homogeneously fill the universe with (non-vanishing)
space charge. Having chosen a fixed coordinate system, the divergence equation requires an
electric field of the typeEr ∝ r. Since the charge distribution is the same in a system having
its origin at a different point than the first, the field type must be the same. Thus, the field at a
certain point in the universe depends on the system chosen, because the correspondig value of
r is different for all systems with different origins.

Continuing with the magnetic field, let’s additionaly assumethe charge to drift intoz-direction.
Since this means a non-vanishing current density with respect to the fixed coordinate system,
the induction law requires a magnetic field of the typeHϕ ∝ ̺. Again, the field at a certain point
depends on the system chosen, since the current distribution is the same for all systems having
parallelz-axis’.

Now, physics requires solutions beeing independent of the coordinate system. Together with
M’s equations we must conclude that the concept of a space charge filled universe is
inacceptable. However, reducing analysis to one dimension(and thus accepting unbounded ar-
eas) means a significant simplification. Furthermore, in first order we are interested in the rf
components of the fields only, for which the inconsistency does not occur. And since the co-
ordinate system independency appears to be more stringend than M’s equations we will
simply assume vanishing dc electric and magnetic fields, accepting the inconsistency regarding
the divergence and induction laws.

For our special case, since we are dealing with a plasma, the average charge density vanishes
and equation (9) holds anyway. However, instead of meeting (12) we setvions = 0 which yields
in Jions = 0 and the inconsistency for the static magnetic field remains.

3.3 The general solution

In result of applying all relevant laws to the field ansatz (1)to (5) we have derived two homo-
geneous systems of four linear equations for the four field qualities, charge density, velocity,
current density and electric field, one for the forward and one for the backward wave
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with the corresponding determinants

∆F/B = −
ε0γ

2

η

(

(ω ∓ kv0)
2 +
̺0η

ε0γ2

)

.

For having non-trivial solutions the determinants must vanish

(ω ∓ kv0)
2 = ω2

p, (15)

where the more general definition of theplasma frequency has been used

ωp =

√

−
̺0η

ε0γ2
.

Obviously, not all of the constants̺0, v0, ω andk may be chosen arbitrarily. From a practical
point of view we assume the dc charge density and the dc velocity to be given. Depending on
the value ofv0, equation (15) determines the frequency or the wave number.

Equations (14) and (15) represent the most general solutionof the one-dimensional plasma
oscillation problem. For a set of values̺0, v0, ω andk meeting (15), the systems (14) give
the relations between the wave amplitudes of the fields. Their absolute values are finally de-
termined by the boundary conditions of the problem, which are usually given in terms of the
velocity. Therefore, we will express all (other) wave amplitudes as multiples of the velocity
wave amplitudes. This procedure is splitted into two parts,since the relations for a drifting
cloud significantly differ from those valid for stationary clouds.

3.3.1 Stationary electron clouds

For a stationary cloud we havev0 = 0. Except for the charge density all dc fields vanish and
equation (15) reads

ω = ωp.

I.e., the only frequency at which a (not externally driven) stationary electron cloud may oscillate
is its plasma frequency no matter what boundary conditions apply.

Thus, the general solution for a stationary electron cloud is given by equations (1) to (5) with
ω = ωp and
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0 jωp/η 0 1
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= 0 (16)

or

̺F/B = ±̺0
k
ωp

vF/B (17)

JF/B = ̺0vF/B

EF/B = j̺0
1
ε0ωp

vF/B.

With (17), the small signal approximation (6) reduces to (13), namely

vF/B ≪
ωp

k
, (18)

which is the final condition to fulfill.
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3.3.2 Drifting electron clouds (beams)

The situation for drifting clouds is a little bit more complicated than for stationary clouds, since
for v0 , 0 equation (15) has four solutions

k = ±ks/ f

with

ks/ f =
ω ± ωp

v0
.

The indicess and f refer to aslow and afast space charge wave (phase velocitiy), respectively.
Obviously, two more linear independent waves appear in the analysis and we could rewrite the
field ansatz covering all four waves: the slow forward, the fast forward, the slow backward and
the fast backward wave. However, for the application example section 4.2 the backward waves
are not needed, so we modifiy the field ansatz to

̺(z, t) = ̺0 + ̺se
j(ωt−ksz) + ̺ f e

j(ωt−k f z) (19)

v(z, t) = v0 + vse
j(ωt−ksz) + v f e

j(ωt−k f z) (20)

J(v, z) = J0 + Jse
j(ωt−ksz) + J f e

j(ωt−k f z) (21)

E(z, t) = E0 + Ese
j(ωt−ksz) + E f e

j(ωt−k f z)

H(z, t) = 0. (22)

Taking all steps from section 3.2 again, we derive two linearsystems for the waves amplitudes,
one for the fast and one for the slow (forward) space charge wave:































v0 ̺0 −1 0
1 0 0 jks/ fε0
0 0 1 jωε0
0 jγ2(ω − ks/ f v0)/η 0 1





























































̺s/ f

vs/ f

Js/ f
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= 0. (23)

Thus, the general solution for a drifting electron cloud is given be equations (19) to (22) with
the amplitudes related by (23) or

̺s/ f = ∓
̺0

v0

ω ± ωp

ωp
vs/ f (24)

Js/ f = ∓̺0
ω

ωp
vs/ f

Es/ f = ∓j̺0
1
ε0ωp

vs/ f . (25)

All equations are valid as long as the small signal approximation (7) holds, that is

vs/ f ≪ v0. (26)

4 Application of one-dimensional space charge waves

4.1 Resonators

Consider the space between two infinitely extended parallel plates, one atz = −a and the other
at z = a, to be filled with non-drifting plasma. What (non-trivial) waves may exist within this
arragement?
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Since the electrons cannot move through the plates we have the simple boundary condition

v(−a, t) = v(a, t) = 0

and (2) yields the linear system
(

ejka e−jka

e−jka ejka

) (

vF

vB

)

= 0.

For having non-trivial solutions the determinant 2j sin 2ka must vanish, i.e.

k =
mπ
2a
, m = 1,2, . . .

and the system yields

vB = vF(−1)m+1

having for the fields for odd values ofm

̺(z, t) = ̺0 − 2jvF
̺0

ωp

mπ
2a

sin
mπz
2a

ejωpt

v(z, t) = 2vF cos
mπz
2a

ejωpt

J(z, t) = 2vF̺0 cos
mπz
2a

ejωpt

E(z, t) = 2jvF
̺0

ε0ωp
cos

mπz
2a

ejωpt

H(z, t) = 0.

For even values ofm, the terms cos and−j sin must be exchanged. These fields fulfill M’s
equation as long as the small signal approximation (18) holds, i.e.

vF ≪ ωp
2a
mπ

4.2 Bunching of a velocity modulated electron beam

Consider an (infinitely extended) electron beam of the homogeneous charge density̺0 drifting
along thez-axis with velocityv0, figure 2. Atz = 0 we have a modulator causing the velocity to
jump fromv0 to v0 + v̂ejωt. How do the charge and curent densities behave forz > 0?

There are two boundary conditions to apply to the general solution from section 3.3.2: the
jump in rf velocity atz = 0 and that there is no rf charge density atz = 04. Starting with the
second condition

̺(0, t) = ̺0,

equation (19) immediately yields

̺s + ̺ f = 0

4Sometimes this condition is replaced by a vanishing rf current density which yield slightly different equations
but the same final result.

10



̺0, v0, J0 ̺, v, J = ?

z0

v0 v0 + v̂ejωt

Figure 2: One dimensional electron beam with velocity modulator inz = 0.

which – together with (24) – means for the velocity wave amplitudes

(ω + ωp)vs − (ω − ωp)v f = 0. (27)

Continuing with the jump condition

v(0, t) = v0 + v̂ejωt,

equation (20) yields

vs + v f = v̂. (28)

The solution of the linear system (27), (28) determines the velocity wave amplitudes so that
with (24) to (25) all wave amplitudes are given

̺s/ f = ∓̺0
(ω + ωp)(ω − ωp)

ωωp

v̂
2v0

vs/ f =
ω ∓ ωp

ω

v̂
2

(29)

Js/ f = ∓̺0
ω ∓ ωp

ωp

v̂
2

Es/ f = ∓j̺0
1
ε0ωp

ω ∓ ωp

ω

v̂
2
.

With theplasma wavenumber and the usual wavenumber

kp = ωp/v0

k = ω/v0

the interesting rf fields follow from eqns. (19) to (21)

˜̺(z, t) = j̺0
v̂
v0

(ω + ωp)(ω − ωp)

ωωp
sin (kpz)ej(ωt−kz)

ṽ(z, t) = v̂
(

cos (kpz) + j
ωp

ω
sin (kpz)

)

ej(ωt−kz)

J̃(z, t) = j̺ov̂
ω

ωp

(

sin (kpz) − j
ωp

ω
cos (kpz)

)

ej(ωt−kz).
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Figure 3: Normalized magnitudes of the rf fields in a one-dimensional velocity modulated elec-
tron beam.

A usual assumption for electron beam mircowave devices is that the plasma frequency is much
less than the operating frequency

ωp ≪ ω (30)

and the rf fields become even more simple

˜̺(z, t) ≈ j̺0
v̂
v0

ω

ωp
sin (kpz)ej(ωt−kz) (31)

ṽ(z, t) ≈ v̂ cos (kpz)ej(ωt−kz)

J̃(z, t) ≈ j̺ov̂
ω

ωp
sin (kpz)ej(ωt−kz). (32)

By means of (29) and (30), the small signal condition (26) may be rewritten as

Mv =
v̂
v0

≪ 2,

saying that thevelocity modulation impressed atz = 0 must be small enough. Figure 3 depicts
the magnitudes of the normalized rf fields. Starting atz = 0, while the rf velocity decreases with
increasingz, the rf charge and current densities increase. With theplasma wavelength defined
as

λp = 2πv0/ωp,

the densities reach their maximum atz = λp/4, where the rf velocity vanishes. Defining a
current density amplitude as

Ĵ = ̺0v̂
ω

ωp
sin (kpz)
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thecurrent modulation is given by

MI =
Ĵ
J0

= Mv
ω

ωp
sin (kpz).

Another interesting relation can be derived by comparing of(31) with (32):

J̃(z, t) ≈ v0 ˜̺(z, t).

In first order, the rf current sets up from the dc beam velocityand the rf charge density; the
contribution of the rf velocity field to the rf beam current isneglectible small. And this is the
case not only nearz = λp/4 where the rf velocity vanishes but all over the beam. Obviously,
this results from the small signal condition (26).

Finally, let’s discuss the current modulation value. For a 25kV 10mm×0.3mm sheet electron
beam carrying 1A we have a plasma frequencyωp ≈ 8GHz. With an operating frequency of
f = 94GHz the frequency ratio becomesω/ωp ≈ 74. To achieve a current modulation ofMI = 1
atz = λp/4 we need a velocity modulation ofMv ≈ 0.01 which certainly fulfills the small signal
condition. However, evenMv = 0.02 would fulfill that condition yielding a current modulation
of approximately 2. But this meant that at certain instances of time the total current would
become negative, since the rf part is larger than the dc current, which is physically impossible.
Thus, we have to conclude that – even if M’s equations and the small signal condition
are satisfied whith such a current function – for having solutions with physical meaning, we
must restrict the current modulation be less or equal to 1

Mv ≤ ωp/ω.

This also means to keep the charge density non-negative.
From another point of view, it is known that the maximum modulation of a non-negative

current is 2. Why do we have to restrict our modulation to 1? – This results from the small
signal condition (7). A current modulation> 1 is possible only with higher harmonics, for
MI = 2 all higher harmonic modulation coefficients are 2 also. But we restricted the analysis to
keep the higher harmonics neglectible small; our small signal analysis is not capable of handling
such a case.

A The relativistic force equation

In section 3.2.4 we made use of the relation

ṗ = m0γ
3v̇,

the correctness of which is shown in the following. We will need the following laws:

p = mv

m = m0γ

γ = (1− β2)−1/2

β = v/c0.

Here we go:

ṗ = m0γ̇v + m0γv̇. (33)
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The only complex term is ˙γ:

γ̇ =
d
dt

(1− β2)−1/2

= −
1
2

(1− β2)−3/2(−2β)β̇

= γ3ββ̇.

Sinceβ̇v = βv̇, it follows for the magnitudes of equation (33)

ṗ = m0γ
3β2v̇ + m0γv̇

= m0γ
3(1− 1/γ2)v̇ + m0γv̇,

ṗ = m0γ
3v̇,

which is just the equation that was to derive.
In general, this equation is valid in its scalar appearance only. From equation (33) it imme-

diately follows that the directions oḟp and v̇ are equal if and only if ˙γ = 0, i.e. for constatnt
particle energy. Thus

ṗ , m0γ
3v̇,
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