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The formation of bunches in a velocity modulated electroanbecan be ex-
plained by means of space charge waves.

This paper gives an introduction to one-dimensional plagsallations and
space charge waves. As applications, the plasma resonaheedn two paral-
lel plates is considered and the beam current modulatiothuyeexd in a klystron by
a modulating cavity resonator is determined.

1 Introduction

In 1929, Lewi Tonks and Irwing Langmuir observed electroailtaions in ionized gases [1].
While the pure existence of oscillations in electron clouds hot been much surprising —
oscillations in air have been well known this time — its pndijgs have been: In first order,
the frequency of these oscillations depend on the electemsity but not on the boundary
conditions. Thus, in contrast to oscillations in air, theilbation frequency of a plasma is a
property of the medium and not a property of the surroundemnggtry.

These oscillations and other phenomenons appearing im@tedouds may be explained by
the space charge wave theory, which appliesxdeLL’'s equations and the force equation of
LORENTZ.

2 The eigenfrequency phenomenon

Assume an infinitely extended plasma with electron chargeitdeo, and ion charge density
—0o. Due to the large inertia of the ions, if an rf field acts on tlhesma, with respect to the
electrons the motion of the ions can be neglected. If thetreles between-z, and z, are
compressed at both sides to the area betwereandz (figure 1), the electron charge remains
constant while the charge of the stationary ions changes

Qe = 00A27y
Q = —00A2z
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Figure 1: One-dimensional electron cloud excited by cosgon.

The total charge betweefz andzis therefore

Q@ = 2A0(z-2).

Since there are no variations xniandy, there will be az-component of the electric field only
and Gauss law yields the simple relation

Q@) = eAE@ - E(-2].
From the symmetry of the problerg(—2z) = —E(2) and thus

EQ = Z(z-2).
€o
The acceleration of the electronszatonsequently reads
- €0
z = nE@ = n—(@2Z-2)
€o
yielding the homogeneous oscillation equation
2-12(z-2) = 0
€0

with the eigenfrequency of oscillation

which is calledplasma frequency. Here,n = 1.759x 10''As/kg is the specific electron charge
andpg the (negative) electron charge density. Typical valueshHermplasma frequency of elec-
tron beams used in klystrons avg = 1...10GHz.

3 Theory of one-dimensional space charge waves

Space charge waves are related rather to hydrodynamicddteectrodynamics. The funda-
mental laws for their derivation are

e MaxweLL'S equations (divergence and continuity),

e Lorentz’s force equation,



¢ and the convection current equation.

Instead of starting with the fundamental hydrodynamic |gsee [2], chapter 10), since | am
interested in wave solutions only, | will assume forward badkward waves for all components
under consideration. Afterwards these fields will be chdcagainst the laws mentioned above
which will result in conditions for the wave amplitudes.

3.1 The field ansatz

The fields under consideration are the charge density, fbeitye the (convection) current den-
sity, the electric and the magnetic field, which are funciohz andt only; the vectorfields
consist of az-component only. All fields consist of a stationary (sulgstc@), a forward (sub-
scriptF) and a backward (subscrip) wave part. Furthermore, the magnetic field is assumed
to be zeré.

o(zt) = oo+ oped 4 godtkd 1)
V(Zt) = Vo+ ved@ T 4 ypelettid 2
JV,2) = Jo+ Jeeletid 4 gdt+ka 3
E(zt) = Eo+ Epd@ 4 Epglet+d @)
H(zt) = O 5)

These equations describe the electron motion only. Dueettatige inertia of the ions, for the
frequencies under consideration the corresponding field#hé ions are considered to consist
of dc components only. Thusion, Vien andJio, are constants and the total fielasay be written
as

Ototal = Q(Z» t) + Qion
J(Za t) + Jion-

Jtotal

3.2 Conditions for the wave amplitudes

3.2.1 The convection current equation

For the convection current density of the electrons
J = pv,

and with (1) and (2)

J = oo+ (QoVF + QFVO)ei(wt—kZ) + (QOVB + QBVO)ei(wsz)
+(0rVe) €A + (0pve)eA @t + (0p Vg + 0pVE)EH Y.

Since these six components are lineary independent a caopavith equation (3) yields

Jo = 0oVo
Jr = 00VF +0FVo
Jg = ©oVB+ 0BVO.

1For the theory it was enough to set up a forward wave only. Hewén the application example section 4.1 we
will need the backward wave to match our boundary conditions

2This is not obvious, indeed. But what is the meaning of arfsatz

3A total velocity does not exist. Try to imagine what physioaaning such a field should have.



For the second order components we may write

Jr = 0rVF
Jog = 0©BVB
Jos = 0OFVB+ OBVF.

To keep the analysis linear, we have to make a first small be@roximation. Usually, it
is assumed that the magnitudes of the rf components are nmiahes than these of the dc
components. However, since this analysis shall be valicsfationary electron clouds also
(Vo = 0), we must be less restrictive here. We will assume

OF <o and pp<py for vog=0 (6)
VE<\Vy and vg <\ for vo# 0. (7)

In this way it is guaranted that all second order rf composiane much less in magnitude than
the first order rf components which may therefore be neglecte

To be complete, the convection current density of the ioads&q, = oionVion, Which reduces
to

Jion = OionVion-
3.2.2 The divergence equation
For the divergence equation we have
gdiVE = optal
and with (4) and (1)
—jkeo(Er€“ P — Eg€“*'¥) = 00 + 0ions + 0F € ? + g€ (8)

Since the dc component of the electric field may be chosetrariby

Eo = O
. OF
Er = |—
F Jkeo
. 0B
Eg = —]—.
B JkEO

Additionally, equation (8) requires that

00 = —QOions (9)

which is discussed in section 3.2.5.

3.2.3 The induction equation
The next law to fulfill is the induction equation which reads

oE
curlH = Jtotal + SOE. (10)



Taking the divergence we have

jK(Jpg@td _ god@Hdy - = (ke (Epe@tka) — Egdettdy

J|: = —j wEQ E|:

JB = —ja)é‘oEB.
Inserting these fields into (10) yields the surprising refat
curlH = (Jo+ Jon)es, (11)

meaning that the displacement current totally compen#iaga$ convection current. Thus, no rf
component of magnetic field is required. However, havinghtlaginetic field vanishing totally,
(11) requires that

\]0 = _\]ion, (12)

which is discussed in section 3.2.5.

3.2.4 The force equation

Finally, Lorentz’s force equation
p = q(E+vxB)

must be satisfied. Since there is no magnetic field and mationz-direction only, it reduces
to (see appendix A)

dv q

— = E.
dt moy?

With respect to the electrons, the specific chayge, of the ions may be neglected; the ion
velocity is considered to be constant. However, the restiBpeharge—-ng = —e/my of the
electrons is large and an rf electric field will considerabiuence their speed.

With the relativistic specific electron chargg = —e/m, inserting (2) and (4) into

Vo= —nE/y’
yields
jVFei(wt—kZ)(a) _ kVo) + jVBei(wt+kZ)(a) + kVo) — _n/)/Z(EFé(wt—kz) + EBei(wt+kZ)),
LW — kVo
Er = - Y/
F J "y F
LW+ kVo
Eg = - V.
B J /72 B

Here the total time derivative of the phase: wt + kz,

de _ Op, dpi

d ot ozt o+ k(21



and the small signal approximation
wxkv(zt) ~ w=+kvy
which may be rewritten as

Ve < w/k and vg < w/k for vy=0 (13)
VE<Vy and Vg < Vg for vp#0

have been applied.

3.2.5 Discussion of the ion contribution

Including space charge into unbounded considerations e&d/tb an inconsistency regarding
the dc components of the electric and the magnetic field.

Starting with the electric field, let's homogeneously filethniverse with (non-vanishing)
space charge. Having chosen a fixed coordinate system,w@rehce equation requires an
electric field of the typee; « r. Since the charge distribution is the same in a system having
its origin at a diferent point than the first, the field type must be the same. ,Tthadield at a
certain point in the universe depends on the system choseaube the correspondig value of
r is different for all systems with fferent origins.

Continuing with the magnetic field, let’s additionaly assutreecharge to drift inta-direction.
Since this means a non-vanishing current density with ddpethe fixed coordinate system,
the induction law requires a magnetic field of the tyfhex o. Again, the field at a certain point
depends on the system chosen, since the current distnlattbe same for all systems having
parallelz-axis’.

Now, physics requires solutions beeing independent of dloedinate system. Together with
MaxweLL'S equations we must conclude that the concept of a spacgefiiled universe is
inacceptable. However, reducing analysis to one dimer(siod thus accepting unbounded ar-
eas) means a significant simplification. Furthermore, it firder we are interested in the rf
components of the fields only, for which the inconsistencgsdoot occur. And since the co-
ordinate system independency appears to be more stringandvkxweLL’s equations we will
simply assume vanishing dc electric and magnetic fieldgow the inconsistency regarding
the divergence and induction laws.

For our special case, since we are dealing with a plasmayérage charge density vanishes
and equation (9) holds anyway. However, instead of meefi@wWe setiq,s = 0 which yields
in Jions = 0 and the inconsistency for the static magnetic field remains.

3.3 The general solution

In result of applying all relevant laws to the field ansatzt(1}5) we have derived two homo-
geneous systems of four linear equations for the four fiellitigss, charge density, velocity,
current density and electric field, one for the forward aned fam the backward wave

Vo Q0 -1 0 OF/B
1 0 0 ij k80 VE/B _
0 0 1 jweo Jr/B = 0 (14)

0 jy(wFkw)/n O 1 Ers



with the corresponding determinants

2
Mg = ——- ((w # ko) + QOZ)
Y
For having non-trivial solutions the determinants mustistan
(w ¥ kvp)® = wf), (15)

where the more general definition of thkasma frequency has been used

o = [0
P 8072'

Obviously, not all of the constants, vo, w andk may be chosen arbitrarily. From a practical
point of view we assume the dc charge density and the dc weltwcbe given. Depending on
the value ofvy, equation (15) determines the frequency or the wave number.

Equations (14) and (15) represent the most general solafitile one-dimensional plasma
oscillation problem. For a set of values, vy, @ andk meeting (15), the systems (14) give
the relations between the wave amplitudes of the fields. ridimolute values are finally de-
termined by the boundary conditions of the problem, whiahwasually given in terms of the
velocity. Therefore, we will express all (other) wave amydes as multiples of the velocity
wave amplitudes. This procedure is splitted into two pasitsce the relations for a drifting
cloud significantly difer from those valid for stationary clouds.

3.3.1 Stationary electron clouds

For a stationary cloud we hawg = 0. Except for the charge density all dc fields vanish and
equation (15) reads

(U:(,l)p.

l.e., the only frequency at which a (not externally drivet@a}isnary electron cloud may oscillate
is its plasma frequency no matter what boundary conditions apply.

Thus, the general solution for a stationary electron cleughien by equations (1) to (5) with
w = wp and

Voo c0o -1 O OF/B
1 0 0 ijk{;‘o VE/B
i = 0 16
0 0 1 jwpeo || e (16)
0 jwp/p 0 1 S
or
k
OF/B = F00—VF/B (17)
Wp
Jr/B O0VF/B
Ers = Joo VE/B.

With (17), the small signal approximation (6) reduces to)(hamely

VEB K

which is the final condition to fulfill.

w

hat s
k b

(18)



3.3.2 Dirifting electron clouds (beams)

The situation for drifting clouds is a little bit more comgdited than for stationary clouds, since
for vp # 0 equation (15) has four solutions

with
w * wp

ks/f =
0

The indicessand f refer to aslow and afast space charge wave (phase velocitiy), respectively.
Obviously, two more linear independent waves appear intlaéyais and we could rewrite the
field ansatz covering all four waves: the slow forward, trst farward, the slow backward and
the fast backward wave. However, for the application exarspttion 4.2 the backward waves
are not needed, so we modifiy the field ansatz to

o(zt) = oo+ Qsei(wt—ksZ) + Qfei(wt—kfz) (19)
= Vo g f (it

v(z 1) Vg + vegl@tksd) 4y, dlot-ki2 (20)

JV,2) = Jo+ Jglet kD 4 giglet-ked (21)

E(Z1) = Eo+ Edkad 4 g drhia

H(zt) = O. 22)

Taking all steps from section 3.2 again, we derive two lirsatems for the waves amplitudes,
one for the fast and one for the slow (forward) space chargewa

Vo 00 -1 0 Os/f

1 0 0 keteo Vs f _

0 O 1 j(x)EQ Js/f N O (23)
0 jy*(w-—kgtVo)/n O 1 Eg

Thus, the general solution for a drifting electron cloudiigeg be equations (19) to (22) with
the amplitudes related by (23) or

_Oow t wp
= F— \Y, 24
Os/f o o s/ f (24)
L w
Jyt = Foo— Vgt
Wp
o
Est = Floo Vg/f. (25)

All equations are valid as long as the small signal approtiong7) holds, that is

Vgt < V. (26)

4 Application of one-dimensional space charge waves

4.1 Resonators

Consider the space between two infinitely extended parddétg, one at = —a and the other
atz = a, to be filled with non-drifting plasma. What (non-trivial) w&s may exist within this
arragement?



Since the electrons cannot move through the plates we hasrtiple boundary condition
v(-at) = vty = 0
and (2) yields the linear system
ejka e—jka VE
( gika gka )( Vg ) = 0

For having non-trivial solutions the determinant 2j ska2nust vanish, i.e.

(1073
k=— m=12...
2a’ 9 &
and the system yields
Vg = VF(_l)m+1

having for the fields for odd values of

. oo Mm . MmZ; .
t) = — 2jVp— — sin——¢&“r
o(zt) 00 — 4] pr >a >a
mnz .
V(zt) = 2V cos—e@rt
(zt) F a
mrz
Jzt) = 2veoo cosze"”pt
. mnz .
E@1) = 2jvi—=2 cos—— gt
EoWp 2a
H(zt) = 0.

For even values ah, the terms cos andj sin must be exchanged. These fields fulfilhkMveLL's
eqguation as long as the small signal approximation (18)dhale.

2a
VE K wprr_w
4.2 Bunching of a velocity modulated electron beam

Consider an (infinitely extended) electron beam of the homeges charge densipyg drifting
along thez-axis with velocityvy, figure 2. Atz = 0 we have a modulator causing the velocity to
jump fromv, to vp + Ve, How do the charge and curent densities behave f00?

There are two boundary conditions to apply to the generaitieol from section 3.3.2: the
jump in rf velocity atz = 0 and that there is no rf charge densityzat 0*. Starting with the
second condition

o(0,t) = oo,
equation (19) immediately yields

os+tor = 0

4Sometimes this condition is replaced by a vanishing rf eurdensity which yield slightly dferent equations
but the same final result.

10
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00, Vo, Jo o,Vv,J =7
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0 z
Figure 2: One dimensional electron beam with velocity mathulinz = 0.

which — together with (24) — means for the velocity wave atogks
(w+ wp)Vs — (W —wp)vi = 0. (27)
Continuing with the jump condition
v(0,t) = vo+ Ve,
equation (20) yields
Ve+Vs = V. (28)

The solution of the linear system (27), (28) determines #lecity wave amplitudes so that
with (24) to (25) all wave amplitudes are given

(w + wp)(w — wp) l

Os/t = 700

wwp 2V

wF wpV
\Y; = = 29
§/f o > (29)

. wFwpV
Js/f = +00 P

wp 2

.1l wFwp¥

Egr = Floo =

gwp w 2
With the plasma wavenumber and the usual wavenumber

kp = a)p/Vo
k w/Vo

the interesting rf fields follow from eqns. (19) to (21)

V (w + wp)(w — wp)

é(z, t) = on— sin (kpz)ei(wt—kz)
Vo wwp
Uzt) = U(coskyd) +] “P sin (kp2))e+)
w
Jz 1) = josi—=(sin (ks2) - =2 cos ks2))e .
w w

p

11
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Figure 3: Normalized magnitudes of the rf fields in a one-disienal velocity modulated elec-
tron beam.

A usual assumption for electron beam mircowave devicesaisttte plasma frequency is much
less than the operating frequency

wp € W (30)

and the rf fields become even more simple

~ . Vo (ot
8zY ~ ooy sin kp2)e (31)
p
Uzt) ~ Vcoskyze“ ™
~ . oA W, T
Jzt) = joo¥— sin kp2)da, (32)
p

By means of (29) and (30), the small signal condition (26) maydwritten as

M, = < 2,

Sl<

saying that thevel ocity modulation impressed at = 0 must be small enough. Figure 3 depicts
the magnitudes of the normalized rf fields. Startingat0, while the rf velocity decreases with
increasingg, the rf charge and current densities increase. Witlhptagma wavelength defined
as

the densities reach their maximumat 1,/4, where the rf velocity vanishes. Defining a
current density amplitude as

J = 0= sink,2)
Wp

12



the current modulation is given by

A

J w .
M = — = M— :
| % pr sin (K,2)
Another interesting relation can be derived by comparin@aj with (32):
Izt ~ vod(z1).

In first order, the rf current sets up from the dc beam veloaitg the rf charge density; the
contribution of the rf velocity field to the rf beam currentrisglectible small. And this is the
case not only neaz = 1,/4 where the rf velocity vanishes but all over the beam. Olsligu
this results from the small signal condition (26).

Finally, let’s discuss the current modulation value. FoBR\2 10mmx 0.3mm sheet electron
beam carrying 1A we have a plasma frequeagy~ 8GHz. With an operating frequency of
f = 94GHz the frequency ratio becomegw, ~ 74. To achieve a current modulationMdf = 1
atz = 1p/4 we need a velocity modulation 8, ~ 0.01 which certainly fulfills the small signal
condition. However, evei, = 0.02 would fulfill that condition yielding a current modulatio
of approximately 2. But this meant that at certain instandetinee the total current would
become negative, since the rf part is larger than the dcryndich is physically impossible.
Thus, we have to conclude that — even ikMveLL's equations and the small signal condition
are satisfied whith such a current function — for having sohgt with physical meaning, we
must restrict the current modulation be less or equal to 1

My < wp/w.

This also means to keep the charge density non-negative.

From another point of view, it is known that the maximum madioin of a non-negative
current is 2. Why do we have to restrict our modulation to 1? is Tésults from the small
signal condition (7). A current modulation 1 is possible only with higher harmonics, for
M, = 2 all higher harmonic modulation cfiecients are 2 also. But we restricted the analysis to
keep the higher harmonics neglectible small; our smalladignalysis is not capable of handling
such a case.

A The relativistic force equation
In section 3.2.4 we made use of the relation
b = my¥,
the correctness of which is shown in the following. We wiledghe following laws:
= mv
= Myy

(1-p7)7"
= V/G.

=™ <R 3 T
[

Here we go:

P = MoyV+Meyv. (33)

13



The only complex term ig:’
s d 2\—1/2
1 :
= —5(1-p)7(-28)8
= ¥’BB.
Sincepv = Bv, it follows for the magnitudes of equation (33)

p = mey’BV+myyv
Moy*(1 — 1/y2)V + mgyv,

p = my¥,

which is just the equation that was to derive.

In general, this equation is valid in its scalar appearamtg ¢-rom equation (33) it imme-
diately follows that the directions gf andv are equal if and only ify ‘= 0, i.e. for constatnt
particle energy. Thus

p # myyv,
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